วันจันทร์ที่ 6 กุมภาพันธ์ พ.ศ. 2555

ตัวเชื่อมประพจน์ และค่าความจริงของประพจน์ที่มีตัวเชื่อม

ตัวเชื่อมประพจน์ และค่าความจริงของประพจน์ที่มีตัวเชื่อม

กำหนดให้ p และ q เป็นประพจน์ใดๆ
เราสามารถเชื่อมประพจน์ทั้งสองเข้าด้วยกันได้ โดยอาศัยตัวเชื่อมประพจน์ดังต่อไปนี้
1.
ตัวเชื่อมประพจน์ "และ"
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ "และ" สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ∧ q ซึ่งจะมีค่าความจริงเป็นจริง (T) เมื่อ p และ q มีค่าความจริงเป็นจริง (T) ทั้งคู่ นอกนั้นมีค่าความจริงเป็นเท็จ (F)
2.
ตัวเชื่อมประพจน์ "หรือ"
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ "หรือ" สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ∨q ซึ่งจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p และ q มีค่าความจริงเป็นเท็จ (F) ทั้งคู่ นอกนั้นมีค่าความจริงเป็นจริง (T)
3.
ตัวเชื่อมประพจน์ "ถ้า...แล้ว"
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ "ถ้า...แล้ว" สามารถเขียนแทนได้ด้วยสัญลักษณ์ p → q ซึ่งจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p เป็นจริง (T) และ q เป็นเท็จ (F) นอกนั้นมีค่าความจริงเป็นจริง (T)
4.
ตัวเชื่อมประพจน์ "ก็ต่อเมื่อ"
การเชื่อม p และ q เข้าด้วยกันด้วยตัวเชื่อมประพจน์ "ก็ต่อเมื่อ" สามารถเขียนแทนได้ด้วยสัญลักษณ์ p ⇔ q ซึ่งจะมีค่าความจริงเป็นจริง (T) เมื่อ p และ q มีค่าความจริงตรงกัน และจะมีค่าความจริงเป็นเท็จ (F) เมื่อ p และ q มีค่าความจริงตรงข้ามกัน
5.
นิเสธของประพจน์
นิเสธของประพจน์ใดๆ คือ ประพจน์ที่มีค่าความจริงตรงกันข้ามกับประพจน์นั้นๆ และสามารถเขียนแทนนิเสธของ p ได้ด้วย ~p
ตารางแสดงค่าความจริงของประพจน์ที่มีตัวเชื่อม
pqp ∧ qp ∨qp → qp ⇔ q~p~q
T
T
F
F
T
F
T
F
T
F
F
F
T
T
T
F
T
F
T
T
T
F
F
T
F
F
T
T
F
T
F
T

สับเซต และเพาเวอรืเซต

สับเซต และเพาเวอรืเซต

• สับเซต
บทนิยาม เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสามารถเขียนแทนได้ด้วยสัญลักษณ์ A ⊂B
ตัวอย่างที่ 1A = {1, 2, 3}
B = { 1, 2, 3, 4, 5}
A ⊂ B
ตัวอย่างที่ 2C = { x | x เป็นจำนวนเต็มบวก } = {1,2,3,...}
D = { x | x เป็นจำนวนคี่ } = {...,-3,-1,1,3,...}
 D
ตัวอย่างที่ 3E = { 0,1,2 }
F = { 2,1,0 }
E ⊂ F และ F ⊂ E
จากตัวอย่างที่ 3 จะเห็นว่า E ⊂ F และ F ⊂ E แล้ว E = F
สับเซตแท้เซต A จะเป็นสับเซตแท้ของเซต B ก็ต่อเมื่อ A ⊂ B และ A ≠ B
จำนวนสับเซตถ้า A เป็นเซตที่มีสมาชิก n สมาชิกแล้ว จำนวนสับเซตของเซต A จะมี 2n เซต และในจำนวนนี้เป็นสับเซตแท้ 2n - 1 เซต

• เพาเวอร์เซต
บทนิยาม เพาเวอร์เซตของเซต A คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสับเซตทั้งหมดของเซต A และสามารถเขียนแทนได้ด้วยสัญลักษณ์ P(A)
ตัวอย่างที่ 1A = Ø
สับเซตทั้งหมดของ A คือ Ø
P(A) = {Ø }
ตัวอย่างที่ 2B = {1}
สับเซตทั้งหมดของ B คือ Ø, {1}
P(B) = {Ø, {1} }
ตัวอย่างที่ 3C = {1,2}
สับเซตทั้งหมดของ C คือ Ø, {1} , {2}, {1,2}
P(C) ={Ø, {1} , {2}, {1,2} }